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The addition reactions of various nucleophiles to a furyl aldehyde bearing a chiral boronate at the C-3 position furnished chromatographically
separable diastereomers. The R diastereoselection was more favorable when no additive was added. Surprisingly, when lithium alkoxides
were selected as additives, the S diastereoselection is superior instead. Further transformation of C-B bonds to C—C bonds was achieved by
using standard Suzuki coupling conditions to give optically active 2,3-disubstituted furyl alcohols.

6-Hydroxy-2H-pyran-3(6H)-one (1) contains several func- resolutior?® enzymatic resolution of racemic 2-furyl alcohdls,
tionalities that could allow facile introductions of other asymmetric allylatio¥ and aldol reactiof§ of furyl aldehyde
functional groups. In this way, derivatives bhave become

important building blocks for the synthesis of biologically
active natural products (Figure 1The easiest way to access

this type of compounds is through the oxidative rearrange- Nu
ment of furyl alcohols by peracit. Conventional methods RCOsH /D =\ 0 —
developed for the synthesis of furyl alcohols include Sharp- O\\ @ Sob | Hop 0 /R0
less asymmetric aminohydroxylation of vinylfurgrkinetic OH Nu =, Nu
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as well as asymmetric catalytic hydrogenation of furyl PDC in CHCI, furnished furyl aldehydes without destroy-
ketone?’ Despite the high yield and high enantioselectivity, ing the chiral boronate moiety.

all the synthesized furyl alcohols possess only C-2 substit- From the X-ray crystallographic analysis @& (Figure
uents. 2,3-Disubstituted furyl alcohols, on the other hand, 2a) and7b (Figure 2b), it is evident that, compared to the
have attracted less attention.

Boronic esters of $)-pinanediol 2)* and (2R,3R)-1,4- _
dimethoxy-1,1,4,4-tetraphenyl-2,3-butaned®)f (Figure 1)
have been used as efficient chiral auxiliaries in asymmetric
synthesis. Moreover, the diastereoselective aldol reactions
of chiral 3-(-tolylsulfinyl)furfural with silyl ketene were also
reported recently.In connection with our interest in the
realization of highly functionalized pyranore we wish to
report our employment of boronic esters as chiral auxiliaries “§ ./
for the synthesis of optically pure 2,3-disubstituted furyl =% &
alcohols.

Employing our own experience on the regiospecific
synthesis of substituted furahgyrroles? and thiophene$, a b

furyl aldehydes7 were designed as our initial target Figure 2. (a) X-ray crystal structure ofa; (b) X-ray crystal

m0|eFU|es, W_hiCh in turn were synthesized frpm COM- - structure of7b with a predicted more favorabReface nucleophilic
mercially available 3-bromofuran (4) via the regiospecific attack.

route as shown in Scheme 1.

s diol 2 as chiral auxiliary, the bulky did with C, symmetry

Scheme 1. Synthesis of Furyl Aldehyde® more effectively occupies the space around the carbonyl
' group on the furan ring. As th&Hface of the carbonyl group

1. n-Buli, Et,0

" LDA, THF 2. BO+PY), B* was blocked by a bulky substituent, the less hindeRed
U WU\CH on 3 SatNHCl U\CH on face attack of nucleophiles to the carbonyl group was
78% °5 " 4. Diol2or3 ‘;a 81%2 expected, leading possibly to high diastereoselectivity. An
o &b 98;% AML1 calculation also confirms this conformatidhMore-
PDC U\(” o, o j/ko’l.\l/l . over, the huge geometric differentiation between the resultipg
CH,Cl, o a B.=_B:O“"@ b B'=_a(o o diastereomers should also allow for a successful separation

’a 58;: Ioﬁ% of both diastereomers by flash column chromatography.

b 61% We first investigated the addition reactions of furyl
aldehydera (entry 1, Table 1). The addition reaction td
with n-BuLi furnished8a and 9a, which are not separable

Regiospecific depotonatiiof 4 with LDA at —78 °C in on column chromatography, in moderate yield and low
THF gaveo-lithiated furan, which was further quenched by  gjiastereoselectivity. The newly created chiral centers of the
gaseous formaldehyde to furnish furyl alcololTransfor-  diastereomers were confirmed by their conversions to the

mation of the G-Br bond of5 to the C-B bond of6 was  corresponding Mosher est&This unsatisfactory outcome
successful after a series of reactions, including metalation may be attributed to the less pronounced stereochemical
with 2 equiv ofn-BuLi, boronation with triisopropyl borate,  environment of the chiral auxiliary around the carbonyl
hydrolysis of borate salt, and dehydration of furyl boronic group. We then turned our focus to the addition reactions of

acid with the corresponding diols. Mild oxidatitof 6 with 7b. Thus, addition reactions @b with various nucleophiles

2 (a) Haukaas, M. H.. O'Doherty. G. /org. Lett, 20013, 40, (0) afforded diastereomeBbh—h and9b—h in good yields and

a) Haukaas, M. H.; O’'Doherty, G. Arg. Lett. ,3, . . .

Kusakabe, M.; Kitano, Y.. Kobayashi, Y. Sato, &.Org. Chem1989, moderate d|asterepselect|V|t|es (entries82 Ta}ble 1). As
54, 2085. (c) Kita, Y.; Naka, T.; Imanishi, M.; Akai, S.; Takebe, Y.; Matsugi, expected, these diastereomers can be efficiently separated
M. J. Chem. Soc., Chem. Commu®998, 1183. (d) Keck, G. E.; Yu, T. i i _
Org. Lett 1999 1, 289. (e) Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori, by flash COIumn Chromatowaphy Ieadl_nq to pu.re diastere
R.Org. Lett 200Q 2, 1749. (f) Burk, M. J.; Hems, W.; Herzberg, D.; Malan, —Omers. Further increasing the nucleophile’s bulkiness allows

C.; Zanotti-Gerosa, AOrg. Lett.2000,2, 4173. an easier separation of both diastereomers (entri@€s Bable
(3) For a review, see: Matteson, D. Shem. Re»1989,89, 1535. 1). Th | ted chiral t | fi db
(4) (a) Nakayama, K.; Rainier, J. Oetrahedron1990, 46, 4165. (b) )- The newly created chiral centers were also confirmed by

Luithle, J. E. A.; Pietruszka, J. Org. Chem1999,64, 8287. (c) Luithle, conversion to the corresponding Mosher ester, by Riguera’s

J. E. A,; Pietruszka, Jl. Org. Chem2000, 65, 9194. ; ;
() Arai, Y.: Mastda, T Masaki, YSyniett1097. 1450, method:® and by X-ray crystallographic analysfs.

(6) Wong, M. K.; Leung, C. Y.; Wong, H. N. Cletrahedron1997,53,

3497. (11) Courtesy of Prof. Yundong Wu, The Hong Kong University of
(7) Liu, J.-H.; Yang, Q.-C.; Mak, T. C. W.; Wong, H. N. Q. Org. Science and Technology.

Chem.2000, 65, 3587. (12) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.;
(8) Ye, X.-S.; Wong, H. N. CJ. Org. Chem1997,62, 1940. Balkovec, J. MJ. Org. Chem1986,51, 2370.
(9) Ly, N. D.; Schlosser, MHelv. Chim. Actal977,60, 2085. (13) (a) Latypov, Sh. K.; Seco, J. M.; Quia E.; Riguera, RJ. Am.

(10) Matteson, D. S. Irstereodirected Synthesis with Organo-boranes  Chem. Soc1998,120, 877. (b) Latypov, Sh. K.; Seco, J. M.; Qo& E.;
Hafner, K., Rees, C. W., Trost, B. M., Lehn, J.-M., von Ragué Schleyer, Riguera, R.J. Org. Chem1996,61, 8569. (c) Latypov, Sh. K.; Seco, J.
P., Eds.; Springer-Verlag: Heidelberg, 1995; p 107. M.; Quifioa E.; Riguera, RJ. Org. Chem1995,60, 1538.
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s nucleophile and a subsequent intramolecular delivery of the

Table 1. Addition Reactions offa and 7b? alkyl group.tq the aldehyde could not be ruled &ut.
- g - However, this intramolecular alkyl transfer process does not
[\ pNuckeophile 7 - g U@R seem to lead to a good diastereomeric control. Moreover,
0 o B o ¢ initial treatment of7b with 1 equiv oft-BuLi followed by
7a O 8a OH 8a OH subsequent addition of 1 to 3 equiv of PRCLI gave better
7b 8b': . 9b-h diastereoselectivit}£ This indicates that the first equivalent
ab ——B’O”' aa' 3 nRBu of nucleophile is likely to attack the trigonal planar boronate
o b b Pr before the alkylation of the carbonyl group.
c b n-BU Tetrahedral borate species have been known for deéades.
b d b t-Bu The idea of forming tetrahedral borate species from trigonal
o b e b Ph-C=C planar boronates, in which the chiral director is closer to
bB=—g Sr':"e f b n-CsHi—C=C the aldehyde, led us to select alkoxides as additives. By
© ’Kﬁh 9| b HLCSMey) simply using™B NMR spectroscopy8 an upfield shift to
ome h] b MesSiCH aboutd 7 ppm was observed whefb (6 30.8 ppm) was
— mixed with lithium alkoxides, indicating the formation of
leld, e, . .
entry nucleophile conditions  products y%b %o tetrahedral borate species (Table 2).NMR analysis of a
1 n-BuLi Et,0,-78°C 8a 9a 47 23(R)
3 n-BuLi Et,0,-78°C 8c 9c 64 33(R) - _ : : _
4  t-BuLi THF, -78°C 8d 9d 29 33(R) Table 2. Addition Reaction of 7b with Nucleophiles Using
5 PhC=CLi THF, 0°C 8¢ 9e¢ 79 38(R) Lithium Alkoxides as Additiveé
6 n-CsHi;C=CLi THF, 0°C 8f of 75 23(R)
7 CH,=C(SiMe;)MgBr THF,-78°C 8g 9g 81 20(R) - . 8d and 9d
8  MesSiCH,MgCI Et,0,-78°C 8h 9h 85 71(R) 7b|% or
9  MesSiCH,MgCI DME, —60°C 8h 9h 84 72(R) -hucleophle | _8h and 9h_|
10  MesSiCH,MgClI PhMe, —78°C 8h 9h 81 56(R)
11 MesSiCH,MgClI DCM,-78°C 8h 9h 86 6(R) yield, de,
12 MesSiCH,MgCI Hex, —78°C 8h 9h 94 3(R) entry  nucleophile additive B 6" products = %° %d
13 MesSiCH,MgClI THF,—-78°C  8h 9h 92 0(-) T Bl MeOLi 76 8d 91 54 500
a All reactions were carried out by adding nucleophiles (4 equiv) to furyl 2 tBuLi EtOLi 70 8d 9d 64 67(S)
aldehydes7. b Total isolated yield o8 and 9. ¢ Determined byH NMR 3  MegSiCH,MgCI EtOLi 7.0  8h 9h 57  71(S)
analysis of crude mixture. The major diastereomer is indicated in the 4 TBuLi n-ProLi 76 8 9d 49 99(S)
parentheses. 5 MesSiCH,MgCl n-PrOLi 7.6 8h 9h 51 73(S)
6 t-BuLi nBuoOLi 7.5 8 9d 37 95(S)
7  MeSiCH,MgCI n-BuOLi 75 8h 9h 40 82(S)
i 8 t-BuLi n-AmOLi 7.5 8d 9d 46 99(S)
It was found that théR diastereomer8b—d and8h were 9 t-BuLi n-AmoOLi 75 8d 9d 70 58(S)
more polar than th& diastereomer8b—d and9h. For the _ 12-C-av
. . . 10  t-BuLi n-AmoOLi 7.5 8 9d 85 33(S)
nucleophiles with3-hydrogens (entries 1—4, Table 1), 12-C-4f

reduction of7 to give furyl alcohol6 was the main reason . _ _ N ) _
for the low reaction vields. To overcome the vield limitation _2All reactions were carried out by mixing lithium alkoxides (1.3 equiv)
or ) ) Y : y »  with furyl aldehyde7b in suitable solvents at78 °C; then nucleophiles
nucleophiles withoug-hydrogens were employed. Encour- (1% iﬁ‘”?cvlf&e é?ded. THF a}nEZBBtFwere Lsted f(écr _Ir_1uclle_op|hilei3u_Li|d

; ; ; ; and MeSi gCl, respectively® BF; as references Total isolated yie
aging result§ Wer'e' obtained bY emplo}"”g :MQHZMQC_I of 8 and9. 4 Determined byH NMR analysis of crude mixture. The major
as nucleophile, givin@h and9h in 85% isolated yield with diastereomer is indicated in parenthesek2-Crown-4 (1.3 equiv). 12-
71% de. This satisfactory result prompted us to further Crown-4 (15 equiv).
investigate its scope and limitation. It is important to note
that solvents greatly influence the diastereoselectivity of the ) ) o )
addition reactions ofb with MesSiCH,MgCl. When cyclic m_lxture,_whlch was obtained by mixing Ilthlurhmethomde
ether THF was used, no diastereoselectivity was observed""l'(;h h7%'n d-methanol, e(ljlsp gave s_tror;g evidence thalt the
(entry 13, Table 1). Surprisingly, however, when the less 2/dehyde group remained intatBuLi and MeSICHMgC

Lewis basic DME or EO was employed as solvent, the were selected to react with the tetrahedral borate species.

diastereoselectivity was tremendously increased to over 70%°UrPrising, the diastereoselectivity changed friérdiaster-

(entries 8 and 9, Table 1). Such phenomena can be brieﬂyeomeric selection tS diastereomeric selection. Further
explained in ter}n of the Grignard reagent's reactivity. A increasing the alkyl chains of the alkoxides resulted in much
more strongly Lewis basic solvents such as THF would higher diastereoselectivity. This observed diastereoselectivity

increase the number of monomeric, solvated species of the n o =
. . . (15) A 1B signal ato 9 ppm was detected upon addition of an
Grignard reagent, leading to enhanced nucleophilicity of the organometallic reagent to the chiral furanylboronate.

C—Mg bond, thereby increases its reactivity but decreases (16) Employing 1 to 3 equiv of PhC=CLi ga\dand9ein 53%, 50%,
its diastereoselectivity toward the aldehyde group. The and 42% yields in 47%F), 22% R) and 71%R) de, respectively
y yde group. (17) (a) Curtis, A. D. M.; Whiting, ATetrahedron Lett1991, 32, 1507.

possibility of the formation of a tetrahedral borate intermedi- (b) Curtis, A. D. M.; Mears, R. J.; Whiting, ATetrahedron Lett1993,49,

; . 187.
ate between the chiral boronate and the organometallic (18) Noth, H.: Wrackmeyer, B. IN M.R. Spectroscopy of Boron
CompoundsDiehl, P., Fluck, E., Kosfield, R., Eds.; Springer-Verlag: Berlin,
(14) See Supporting Information. 1978.
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Figure 3. Proposed transition state for the addition reactions of

7b with lithium alkoxides as additives.

our stable furyl boronic ester of di@ with aryl iodide was
successful, giving optically pure 2,3-disubstituted furyl
alcohols11 and 12 (Table 3)?° Also, as mentioned in the
introduction, these compounds can serve as important
precursors for 6-hydroxy#2-pyran-3(61)-one 1. Thus treat-
ment of 12b with m-chloroperbenzoic acid in GBI,
affordedlain 91% vyield (Figure 4).

Me
MCPBA
I\ =Bu CHCl,
o = NM%
OH
12b

is explained by assuming the following reaction mechanism Figure 4. Oxidative rearrangement d®b.

(Figure 3)'° The alkoxides first added to the trigonal planar

boronate center to form a tetrahedral borate, which is a

transition stagel0, with a seven-membered ring linked by
the lithium ion. Due to the conformational congestion, the
alkyl chain of the alkoxides must point downward, which
blocks theRe-face of carbonyl group. Thus, nucleophiles
must attack the carbonyl group from the less hindesed
face. Addition of 12-crown-4, which traps the'Lions and

In conclusion, we have described efficient procedures for
the realization of furyl aldehyde§ and their addition
reactions with different nucleophiles such as Grignard
reagents and alkyllithiums. Conversion of furyl aldehydes
to imine derivatives and their addition reactions are currently
underway in our group.
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